Algorithms for LTS regression

October 26, 2009
Outline

- Robust regression.
- LTS regression.
- Adding row algorithm.
 - Branch and bound algorithm (BBA).
 - Preordering BBA.
- Structured problems
 - Generalized linear model.
 - Seemingly unrelated regressions.
- Conclusions.
Ordinary least squares (OLS)

- Ordinary linear model (OLM):

\[y = A\beta + \varepsilon, \]

where \(y \in \mathbb{R}^m \), \(A \in \mathbb{R}^{m \times n} \), \(\beta \in \mathbb{R}^n \) and \(\varepsilon \in \mathbb{R}^m \).

- Objective function:

\[\text{RSS}(\beta) = \sum_{i=1}^{n} \varepsilon_i^2. \]

- OLS estimation is sensitive to outliers.
Outliers

outlier

influential
Outliers
Outliers

- Outlier
- Influential
Outliers

- Outlier
- Influential
Outliers
Robust regression

- **Breakdown point**: smallest fraction of contamination that can bias the estimator arbitrarily.
- **OLS**: one observation is enough to contaminate the estimator; i.e. breakdown point is $1/n \rightarrow 0$.
- **High-breakdown** estimators can resist contamination of nearly 50% of the data.
- Known algorithms: least median of squares (LMS), least trimmed squares (LTS).
LTS regression

- Objective function:

\[
\text{RSS}_h(\beta) = \sum_{i=1}^{h} (\varepsilon^2)_i,
\]

where the coverage \(h \) may lie between \(m/2 \) and \(m \).

- Equivalent to finding the \(h \)-subset with optimal LS objective function.

- Naive algorithm: enumerate all subsets.

- Number of \(h \)-subsets:

\[
\binom{m}{h} = \frac{m!}{h!(m-h)!}.
\]

- Computational load is prohibitive for \(m \geq 30 \).
LTS regression

- Approximate algorithms: PROGRESS (Rousseeuw and Leroy, 1987), FSA (Hawkins, 1994), FAST-LTS (Rousseeuw and Van Driessen, 2006).
- Exact algorithm: branch and bound (Agulló, 2001).
Issues

- In practice, coverage $h = 50\%$ is used.
- But: contamination rarely exceeds $15\%–20\%$ of data.
- High-breakdown seems like overkill: large portions of good data are ignored.
- Problem: find a good tradeoff between robustness (i.e. “discard all bad data”) and efficiency (i.e. “include all good data”).
- Choice of the unknown coverage parameter h?
Adding row algorithm (ARA)

- Strong correspondence between row-selection techniques and procedures for computing all-variable-subsets regression.
- Computes the all-observation-subsets regression for a range of coverage values \([h_{\text{min}}, h_{\text{max}}]\).
- The organization of the algorithm is determined by the all-subsets tree.
- A node corresponds to an observation-subset model.
- The model is represented by the upper-triangular factor of the QR decomposition of \((A, y)\).
- A Cholesky updating algorithm is employed to move from one node to another.
Regression tree

- Number of observations: $m = 4$.
- Number of nodes: 2^m.
Algorithms for LTS regression

— Adding row algorithm

Cholesky update

\[(R, z)\]

\[(x^T, y)\]
Cholesky update

Givens rotation: G_1
Cholesky update

Givens rotation: G_2
Cholesky update

Givens rotation: G_3
Cholesky update

Givens rotation: G_4
Cholesky update

Givens rotation: G_5
Cholesky update

The RSS.
Branch and bound algorithm (BBA)

- ARA is prohibitive even for a moderate number of observations.
- Fundamental property: given two subsets of observations S_A and S_B,
 \[\text{RSS}(S_A) \leq \text{RSS}(S_B) \quad \text{if} \quad S_A \subset S_B, \]
 where $\text{RSS}(S_Z)$ denotes the residual sum of squares of the LS estimator of the model S_Z.
- In other words: updating the model by one observation increases the RSS.
- Can be used to restrict the number of evaluated subsets (reduce search space i.e. number of generated nodes).
Cutting test

Residual lookup table:

\[\ldots < \rho_k < \rho_{k+1} < \rho_{k+2} < \rho_{k+3} < \ldots \]

Cutting test:

\[b_S = \text{RSS}(S) > \rho_{k+3}, \]

where \(S \) is a set of \(k \) observations and \(b_S \) the node bound.
Observation preordering

- **BBA:** computational efficiency rises when more nodes are cut i.e. when bigger subtrees are bounded with bigger values.

- **Strategies:** sort observations in decreasing order of
 1. absolute LS residuals: estimate the observation-subset model and determine the residuals $\hat{\epsilon}$
 - cheap (solve one linear system);
 - approximate bounds;
 2. partial increment in RSS:
 $$(S,[123])$$
 $$RSS([S,1])?$$ $$RSS([S,2])?$$ $$RSS([S,3])?$$
 - expensive (m Cholesky updates);
 + exact bounds.
Computing the bound

\[(R, z)\]

\[(x^T, y)\]
Computing the bound

Givens rotation: G_1
Computing the bound

Givens rotation: G_2
Computing the bound

Givens rotation: G_3
Computing the bound

Givens rotation: G_4
Computing the bound

The RSS!
Computing the bound

Benefits:
- the upper-triangular factor is not modified;
- half the computational cost;
- avoids matrix-copy operations.
Example 1

- Dataset:
 - random data matrix $X \ (m = 50, n = 4)$;
 - fixed coefficients β;
 - $y = X\beta + \varepsilon$.

- Outliers: construct modified model (X_m, y_m) from (X, y) by replacing ten observations with random data.

- Compute LTS estimates and determine relative efficiencies:

$$RE(h) = \frac{\sigma_h^2}{\sigma_{LS}^2}, \quad \text{where } h = h_{min}, \ldots, h_{max}.$$
Relative efficiencies: original model \((X, y)\)
Relative efficiencies: contaminated model \((X_m, y_m)\)
Example 2

- Dataset: randomly generated according to
 \[y = x_{i,1} + x_{i,2} + \ldots + x_{i,n-1} + 1 + e_i, \]
 where \(e_i \sim N(0, 1) \) is the error term and \(x_{i,j} \sim N(0, 100) \) are the explanatory variables.

- Outliers: replace some of the \(x_{i,1} \) by values that are normally distributed with mean 100 and variance 100.
Relative efficiencies: original model \((X, y)\)
Relative efficiencies: contaminated model \((X_m, y_m)\)
Generalized least squares (GLS)

- The general linear model (GLM) is given by

\[y = X\beta + \varepsilon, \quad \varepsilon \sim (0, \sigma^2\Omega) \]

where \(y \in \mathbb{R}^m, X \in \mathbb{R}^{m \times n}, \beta \in \mathbb{R}^n \) and \(\Omega \in \mathbb{R}^{m \times m} (m \geq n) \).

- \(\Omega \) is assumed to be of full rank.

- The BLUE of \(\beta \) minimizes the objective function

\[\|X\beta - y\|_{\Omega^{-1}}^2 = (X\beta - y)^T\Omega^{-1}(X\beta - y). \]
The GLS is reformulated as
\[
\hat{\beta}, \hat{u} = \arg\min_{\beta, u} \|u\|^2 \quad \text{subject to} \quad y = X\beta + Bu,
\]
where \(B \in \mathbb{R}^{m \times p} \) such that \(\Omega = BB^T \) and \(u \sim (0, \sigma^2 I_m) \) \((p \geq m - n)\).

\(\Omega \) may be singular.

Residual sum of squares (RSS):
\[
\text{RSS}(\hat{\beta}) = \|\hat{u}\|^2.
\]

Computational tool: generalized QR decomposition (GQRD) of \(X \) and \(B \).
Solving the GLLSP

▷ In a node on level \(n \) of the ARA tree:

\[
\begin{align*}
A & \quad S & \quad X \\
\begin{array}{l}
y \\
X \\
B
\end{array}
\end{align*}
\]

▷ Compute GQRD and transform GLLSP:

\[
\begin{align*}
A & \quad S & \quad A \\
\begin{array}{l}
y \\
R \\
T
\end{array}
\end{align*}
\]
Updating the GLLSP

- For each new node:

 \[\tilde{A}: \]

 \[\tilde{S}: \]

 \[y \quad R \quad T \]

- Update GQRD and transform GLLSP:

 \[\tilde{A}: \]

 \[\tilde{S}: \]

 \[\tilde{y} \quad \tilde{R} \quad \tilde{T} \]
Updating the GLLSP

- Reduce the GLLSP:

\[\tilde{A} \quad \tilde{S} \]

\[\tilde{y} \quad \tilde{R} \quad \tilde{T} \]
Update the GQRD by the use of Givens rotations.
Givens sequence

- Update the GQRD by the use of Givens rotations.
Givens sequence

- Update the GQRD by the use of Givens rotations.
Givens sequence

- Update the GQRD by the use of Givens rotations.
Update the GQRD by the use of Givens rotations.
Givens sequence

- Update the GQRD by the use of Givens rotations.
Givens sequence

- Update the GQRD by the use of Givens rotations.
Seemingly unrelated regressions (SUR)

- **G** regressions:
 \[y^{(i)} = X^{(i)} \beta^{(i)} + \varepsilon^{(i)}, \quad i = 1, \ldots, G, \]
 where \(y^{(i)} \in \mathbb{R}^m, X^{(i)} \in \mathbb{R}^{m \times n_i} \quad (m \geq n_i), \beta^{(i)} \in \mathbb{R}^{n_i}, \varepsilon^{(i)} \in \mathbb{R}^m \) and \(\mathbb{E}(\varepsilon^{(i)}_k) = 0 \).

- Contemporaneous disturbances are correlated:
 \[\text{Var}(\varepsilon_t^{(i)}, \varepsilon_t^{(j)}) = \sigma_{ij} \quad \text{and} \quad \text{Var}(\varepsilon_s^{(i)}, \varepsilon_t^{(j)}) = 0 \quad \text{if} \quad s \neq t. \]

- Compact form:
 \[
 \text{vec}(Y) = \bigoplus_{i=1}^G \left(X^{(i)} \right) \text{vec}(\{\beta^{(i)}\}_G) + \text{vec}(E),
 \]
 where \(Y = [y^{(1)} \quad \cdots \quad y^{(G)}] \in \mathbb{R}^{m \times G}, E = [\varepsilon^{(1)} \quad \cdots \quad \varepsilon^{(G)}] \in \mathbb{R}^{m \times G}, \)
 \(\text{vec}(E) \sim (0, \Sigma \otimes I_m) \) and \(\Sigma = [\sigma_{ij}] \in \mathbb{R}^{G \times G}. \)
GLLSP of the SUR model

- **SUR-GLLSP**: $\{\hat{\beta}^{(i)}\}_G$, $\hat{U} = \text{argmin}_{\{\beta^{(i)}\}_G, U} \| U \|_F$ subject to

$$\text{vec}(Y) = \left(\bigoplus_{i=1}^{G} X^{(i)} \right) \text{vec}(\{\beta^{(i)}\}_G) + K \text{vec}(U),$$

where $E = UC^T$, $C \in \mathbb{R}^{G \times G}$ is upper triangular such that $CC^T = \Sigma$, $K = C \otimes I_m$, $\text{vec}(U) \sim (0, \sigma^2 I_M)$ and $M = Gm$.

- **Objective function:**

$$\text{RSS}(\{\hat{\beta}^{(i)}\}_G) = \| \hat{U} \|_F.$$
Solving the SUR-GLLSP

- On level n_G of the subsets tree:

\[
\text{vec}(Y) \oplus X^{(i)} \quad K
\]

- Orthogonal transformation Q^T from the left:
Solving the SUR-GLLSP

- Permute rows and columns:

- Orthogonal transformation P^T from the right:
Solving the SUR-GLLSP

Reduce SUR-GLLSP:

\[\text{vec}(\{z^{(i)}\}) \oplus R^{(i)} \]

\[T_{11} \]
Updating the SUR-GLLSP

- For each new new node:
 \[
 \text{vec}(\{z^{(i)}\}) \oplus R^{(i)}
 \]

- Apply orthogonal transformation \(\tilde{Q}^T \) from the left:
Updating the SUR-GLLSP

- Apply orthogonal transformation \tilde{P}^T from the right:

- Reduce SUR-GLLSP:

$$\text{vec}(\{\tilde{z}^{(i)}\}) \oplus \tilde{R}^{(i)}$$

$$\tilde{T}_{11}$$
Conclusions

- Efficient method to compute exact LTS estimates for a coverage range.
- Allows
 - to assess the quality (i.e. degree of contamination) of the data;
 - to identify outliers;
 - to choose the “best” (e.g. the most efficient) estimate.
- Algorithm can be applied to other, structured linear models: black box.
- R package.